
Week 5 (Day 1) 

(4 Oct. 2016) 

 

Covered: 

 Four rules of derivatives (i.e. +, −,×,÷) 

 Mentioned Chain Rule (i.e. derivative of composite function of two functions) 

 

 

Four rules of derivatives 

Assumption: In the following let 𝑓(𝑥), 𝑔(𝑥) be two functions, both having the same 

domain, and both differentiable at the point 𝑥 = 𝑐 in the domain. Then we have 

(*) 𝑓(𝑥) ± 𝑔(𝑥), 𝑓(𝑥)𝑔(𝑥), 𝑓(𝑥)/𝑔(𝑥) are all differentiable at 𝑥 = 𝑐.  (For the 

last one, one has to make the extra assumption that 𝑔(𝑐) ≠ 0.) 

Furthermore, the derivatives of these “sum”, “difference”, “product” and “quotient” 

functions at the point 𝑥 = 𝑐 are given by formulas listed below: 

 

1. The derivative of the sum function 𝑓(𝑥) + 𝑔(𝑥) at 𝑥 = 𝑐 (If you like, you can 

give a name to this function, calling it for example (𝑓 + 𝑔)(𝑥) or ℎ(𝑥) ) has 

the following formula. 

𝑑(𝑓(𝑥) + 𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑓′(𝑐) + 𝑔′(𝑐) 

2. Similarly, for the function 𝑓(𝑥) − 𝑔(𝑥), we have 

𝑑(𝑓(𝑥) − 𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑓′(𝑐) − 𝑔′(𝑐) 

3. (Product Rule) For product of these two functions, the formula is slightly 

different, i.e.  

𝑑(𝑓(𝑥)𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

= 𝑔(𝑐)𝑓′(𝑐) + 𝑔′(𝑐)𝑓(𝑐) 

Remark: In the case when 𝑔(𝑥) ≡ 𝑘 (i.e. it is constantly equal to 𝑘), the above 

formula has the simpler form  

𝑑(𝑘𝑓(𝑥))

𝑑𝑥
|

𝑥=𝑐
= 𝑘𝑓′(𝑐) 

4. (Quotient Rule) For quotient, it is 

𝑑(𝑓(𝑥)𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

=
𝑓′(𝑐)𝑔(𝑐) − 𝑔′(𝑐)𝑓(𝑐)

(𝑔(𝑐))
2  

 

 



Idea of Proof of the Product Rule 

We just outline one or two of the ideas. If you are interested in more detail, just send 

me an e-mail. I will explain more to you. 

 

A Preparatory Theorem 

To show the product rule, we need the following “little” result: 

Theorem (Differentiable at 𝑥 = 𝑐 ⇒ continuous at 𝑥 = 𝑐.) 

Assume 𝑓(𝑥) is differentiable at 𝑥 = 𝑐, then 𝑓(𝑥) is continuous at 𝑥 = 𝑐. 

 

Proof: 

Main idea is to start from the statement lim
ℎ→0

𝑓(𝑐 + ℎ) = 𝑓(𝑐)  (definition of 

“continuous at 𝑥 = 𝑐.”) and try to connect it to  i.e. lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
= 𝑓′(𝑐) 

(definition of “differentiable at 𝑥 = 𝑐.”). 

 

The connection can be established if one looks at the expressions: 

 

(i) 𝑓(𝑐 + ℎ) − 𝑓(𝑐) and  

(ii) 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 

This is because 𝑓(𝑐 + ℎ) − 𝑓(𝑐) =
(𝑓(𝑐+ℎ)−𝑓(𝑐))

ℎ
⋅ ℎ 

 

Now we know that in the above equation, both of the limits lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 and the 

limit lim
ℎ→0

ℎ exist. 

Furthermore, the first of them is equal to 𝑓′(𝑐), which is a finite number. The 

second one is equal to zero. 

Combining all these, we get for the right-hand side: 

lim
ℎ→0

(𝑓(𝑐 + ℎ) − 𝑓(𝑐))

ℎ
⋅ lim

ℎ→0
ℎ = 𝑓′(𝑐) ⋅ 0 = 0 

It follows that the limit of the left-hand side also exists and is given by 

 



lim
ℎ→0

(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) = lim
ℎ→0

(
(𝑓(𝑐 + ℎ) − 𝑓(𝑐))

ℎ
ℎ) = lim

ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
⋅ lim

ℎ→0
ℎ

= 0 

 

Steps of the Proof of Product Rule 

1. Consider the “Difference Quotient” i.e. 

𝑓(𝑐 + ℎ)𝑔(𝑐 + ℎ) − 𝑓(𝑐)𝑔(𝑐)

ℎ
 

2. Rewrite it in the form (because we only know the following limits to exist: (i) 

lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 , (ii) lim

ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 ): 

 

𝑓(𝑐 + ℎ)𝑔(𝑐 + ℎ) − 𝑓(𝑐 + ℎ)𝑔(𝑐) + 𝑓(𝑐 + ℎ)𝑔(𝑐) − 𝑓(𝑐)𝑔(𝑐)

ℎ
 

 

Grouping terms we get from the above: 

𝑓(𝑐 + ℎ)[𝑔(𝑐 + ℎ) − 𝑔(𝑐)]

ℎ
+ 𝑔(𝑐) 

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

3. Take limit ℎ → 0. The term 
𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 goes to the limit 𝑔′(𝑐).  On the other 

hand, the term 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 goes to the limit 𝑓′(𝑐). (You can write these two 

facts in the form: lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
= 𝑓′(𝑐) and lim

ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
= 𝑔′(𝑐) ). 

4. We still have two more limits to consider. They are:  

(i) lim
ℎ→0

𝑓(𝑐 + ℎ) and  

(ii) (ii) lim
ℎ→0

𝑔(𝑐).   

Since 𝑓(𝑥) is differentiable at 𝑥 = 𝑐, it is continuous at 𝑥 = 𝑐. So the 

first one is just lim
ℎ→0

𝑓(𝑐 + ℎ) = 𝑓(𝑐) . As for the second one, 𝑔(𝑐) is a 

constant function, so its limit is given by lim
ℎ→0

𝑔(𝑐) = 𝑔(𝑐). 

5. Combining all the above, we get       

lim
ℎ→0

𝑓(𝑐 + ℎ)  lim
ℎ→0

[𝑔(𝑐 + ℎ) − 𝑔(𝑐)]

ℎ
+ 𝑔(𝑐) lim

ℎ→0
 
𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

= 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐). 



Friday Group math1510 

Week 5 (Day 2) 

(7 Oct. 2016) 

 

Done:  

 Chain Rule, application, proof strategy 

 Implicit differentiation 

 Intermediate Value Theorem 

 

An Application of the Chain Rule 

Show that 
𝑑𝑥𝛼

𝑑𝑥
= 𝛼𝑥𝛼−1, for any 𝛼 ∈ 𝑅 and any 𝑥 > 0.  

(Solution) 

Interpret 𝑥𝛼 as 𝑒𝛼 ln 𝑥 (where 𝑥 > 0). 

Then using Chain Rule, we obtain (by letting 𝑦 = 𝛼 ln 𝑥) [ For simplicity, we don’t 

write |𝑥=𝑐 here.] 

𝑑𝑥𝛼

𝑑𝑥
=

𝑑(𝑒𝛼 ln 𝑥)

𝑑𝑥
=

𝑑(𝑒𝛼 ln 𝑥)

𝑑𝑦
 
𝑑(𝛼 ln 𝑥)

𝑑𝑥
  

=
𝑑(𝑒𝑦)

𝑑𝑦
 
𝑑(𝛼 ln 𝑥)

𝑑𝑥
= 𝑒𝑦 ⋅ 𝛼 (

1

𝑥
) = 𝑒𝛼 ln 𝑥 ⋅ 𝛼 ⋅ 𝑥−1 

= 𝑒ln 𝑥𝛼
⋅ 𝛼 ⋅ 𝑥−1 = 𝑥𝛼𝛼𝑥−1 = 𝛼𝑥𝛼−1. 

 

Mathematical Formulation of Chain Rule 

The chain rule say:  

Theorem. If 𝑓(𝑦) and 𝑔(𝑥) are two functions. Assume  

(i) 𝑓(𝑦) is differentiable at 𝑦 = 𝑔(𝑐) ; 

(ii) 𝑔(𝑥) is differentiable at 𝑥 = 𝑐.  

Then  

(i) 𝑓(𝑔(𝑥)) is differentiable at 𝑥 = 𝑐 and 

(ii)  
𝑑𝑓(𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐
= 𝑓′(𝑔(𝑐)) ⋅ 𝑔′(𝑐). 

 

Proof Strategy 

Again 2 steps. 

(Step 1) Consider the Difference Quotient, i.e. 

𝑓(𝑔(𝑐 + ℎ)) − 𝑓(𝑔(𝑐))

ℎ
 

Rewrite it as 



𝑓(𝑔(𝑐 + ℎ)) − 𝑓(𝑔(𝑐))

𝑔(𝑐 + ℎ) − 𝑔(𝑐)
⋅

𝑔(𝑐 + ℎ) − 𝑔(𝑐)

ℎ
  

 

Having done this, take limit and let ℎ → 0 in the above expression. This will lead to 

𝑓′(𝑔(𝑐))𝑔′(𝑐) 

 

Remark: Two things to note. 

1. The prime (i.e.  ‘  ) in 𝑓′(𝑔(𝑐)) means “differentiation with respect to 𝑦”, 

while the prime (i.e  ‘ ) in 𝑔′(𝑥) means “differentiation with respect to 𝑥". 

2. The above “proof strategy” has a lot of things which one has to fix. For 

example, one has to consider what happens if 𝑔(𝑐 + ℎ) − 𝑔(𝑐) = 0 for 

numbers 𝑐 + ℎ near to 𝑐. 

 

  

Implicit Differentiation 

In high schools, you may have learned this way of computing derivative of a function: 

 

𝑥2 + 𝑦2 = 𝑎2 

Then compute the derivative of 𝑥, then of 𝑦, then of 𝑎 (which is on the right-hand 

side of the equation) all with respect to the independent variable 𝑥. Having done 

this, we obtain 

𝑑𝑥2

𝑑𝑥
+

𝑑𝑦2

𝑑𝑥
=

𝑑𝑎2

𝑑𝑥
 

Now 
𝑑𝑥2

𝑑𝑥
= 2𝑥, 

𝑑𝑦2

𝑑𝑥
=

𝑑𝑦2

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 2𝑦 ⋅ 𝑦′ and 

𝑑𝑎2

𝑑𝑥
= 0 

 

Result: We get now 2𝑥 + 2𝑦𝑦′ = 0 implying 𝑦′ =
−𝑥

𝑦
. 

 

Remark: To compute the value of this derivative, we need two numbers, i.e. both 𝑥 

and 𝑦. Or we can express 𝑦 in terms of 𝑥 using the equation  

𝑥2 + 𝑦2 = 𝑎2 

to get 𝑦′ = −
𝑥

±√𝑎2−𝑥2
= ∓ (

𝑥

√𝑎2−𝑥2
).  

 

Question: Why can we do this? 

 

Answer: This is due to the  



Implicit Function Theorem, which roughly says: 

Given any function of two variables 𝑥 and 𝑦, i.e. 𝑓(𝑥, 𝑦) and an equation 

𝑓(𝑥, 𝑦) = 𝑐 (the right-hand side is a constant), then we have 

 

1. 𝑦 is a function of 𝑥 or 

2. 𝑥 is a function of 𝑦. 

 

In symbols, we write the sentence “𝑦 is a function of 𝑥” as “𝑦 = 𝑦(𝑥)”. (We don’t 

write things like “𝑦 = 𝑓(𝑥)” because that would need an extra letter 𝑓.) 

 

Similarly, the second sentence becomes 𝑥 = 𝑥(𝑦). 

 

Example: 

Suppose 𝑓(𝑥, 𝑦) = cos(𝑥𝑦) 𝑒𝑥𝑦.  

Now the above theorem says 𝑓(𝑥, 𝑦) = 𝑐 implies 𝑦 = 𝑦(𝑥) or 𝑥 = 𝑥(𝑦). Let’s 

suppose the first case is true, then we can find 
𝑑𝑦

𝑑𝑥
.  

 

Doing this, we obtain 

𝑑 cos(𝑥𝑦) 𝑒𝑥𝑦

𝑑𝑥
=

𝑑𝑐

𝑑𝑥
= 0 

 

The left-hand side is:  
𝑑cos (𝑥𝑦)

𝑑𝑥
𝑒𝑥𝑦 + cos(𝑥𝑦) 

𝑑𝑒𝑥𝑦

𝑑𝑥
= 0  

 

− sin(𝑥𝑦)
𝑑(𝑥𝑦)

𝑑𝑥
𝑒𝑥𝑦 + cos(𝑥𝑦) [𝑒𝑥𝑦 (

𝑑(𝑥𝑦)

𝑑𝑥
)] = 0 

− sin(𝑥𝑦) {𝑥
𝑑𝑦

𝑑𝑥
+

𝑑𝑥

𝑑𝑥
𝑦} 𝑒𝑥𝑦 + cos(𝑥𝑦) [𝑒𝑥𝑦 {𝑥

𝑑𝑦

𝑑𝑥
+

𝑑𝑥

𝑑𝑥
𝑦}] = 0 

 

−sin(𝑥𝑦) {𝑥𝑦′ + 𝑦}𝑒𝑥𝑦 + cos(𝑥𝑦) [𝑒𝑥𝑦{𝑥𝑦′ + 𝑦}] = 0 

𝑦′𝑥𝑒𝑥𝑦 [−sin(𝑥𝑦) + cos(𝑥𝑦)] = 𝑦𝑒𝑥𝑦[sin(𝑥𝑦) − cos(𝑥𝑦)] 

 

Hence 𝑦′ = −
𝑦

𝑥
  after writing 𝑦′ on the left-hand side and the rest on the right-

hand side. 

 

Remark: We said “roughly” because the theorem requires some “differentiability” 



conditions on the function 𝑓(𝑥, 𝑦) which is usually satisfied. Also, the “or” can 

mean “either/or” or “both”. 

 

(Optional) 

In more advanced books, you can find the following statement: 

𝑓(𝑥, 𝑦) = 𝑐   gives  after differentiating with respect to 𝑥, 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
=

𝑑𝑓(𝑥, 𝑦(𝑥))

𝑑𝑥
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝑥
 
𝑑𝑦(𝑥)

𝑑𝑥
 

 

Similarly, when differentiated with respect to 𝑦, it gives 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑦
=

𝑑𝑓(𝑥(𝑦), 𝑦)

𝑑𝑦
=

𝜕𝑓

𝜕𝑥

𝑑𝑥(𝑦)

𝑑𝑦
+

𝜕𝑓

𝜕𝑦
 
𝑑𝑦

𝑑𝑦
 

 

The expressions 
∂𝑓

𝜕𝑥
,

∂𝑓

𝜕𝑦
  are called “partial derivatives”. We will talk about them later 

in the lectures. 

 

 

Intermediate Value Theorem 

This is a useful consequence of the continuity of a function in an interval. More 

precisely, we have 

 

Theorem. 

Suppose 𝑓: [𝑎, 𝑏] → 𝑅 is a function whose domain is the closed interval (i.e. the 

end-points 𝑎 and  𝑏 are included). 

Suppose also that 𝑓(𝑥)  is continuous at each point in [𝑎, 𝑏], and that 𝑓(𝑎) ⋅

𝑓(𝑏) < 0.   (in other words, 𝑓(𝑎) and 𝑓(𝑏) are of “different” signs!) Then the 

curve 𝑦 = 𝑓(𝑥) must intersect the 𝑥 −axis somewhere between 𝑎 and 𝑏. 

 

(In other words, the equation 𝑓(𝑥) = 0 has a solution (maybe more than 1!) in the 

interval (𝑎, 𝑏).) 

 

Remark: The end-points cannot be solution of this equation, because we are 

assuming that 𝑓(𝑎) < 0 or > 0 (and correspondingly 𝑓(𝑏) > 0 or < 0). 

 

Application: 

The polynomial equation: 𝑥7 + 100𝑥4 + 13𝑥 + 17 = 0 has a solution. 

 



Idea of solution: Let 𝑓(𝑥) = 𝑥7 + 100𝑥4 + 13𝑥 + 17 

Find 𝑎 and 𝑏 so that the 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0. Then by the above theorem, 

the equation 𝑓(𝑥) = 0 has a solution in [𝑎, 𝑏]. 


