## Week 5 (Day 1)

(4 Oct. 2016)

Covered:

- Four rules of derivatives (i.e.,,$+- \times, \div$ )
- Mentioned Chain Rule (i.e. derivative of composite function of two functions)


## Four rules of derivatives

Assumption: In the following let $f(x), g(x)$ be two functions, both having the same domain, and both differentiable at the point $x=c$ in the domain. Then we have
$\left(^{*}\right) f(x) \pm g(x), f(x) g(x), f(x) / g(x)$ are all differentiable at $x=c$. (For the last one, one has to make the extra assumption that $g(c) \neq 0$.)
Furthermore, the derivatives of these "sum", "difference", "product" and "quotient" functions at the point $x=c$ are given by formulas listed below:

1. The derivative of the sum function $f(x)+g(x)$ at $x=c$ (If you like, you can give a name to this function, calling it for example $(f+g)(x)$ or $h(x)$ ) has the following formula.

$$
\left.\frac{d(f(x)+g(x))}{d x}\right|_{x=c}=f^{\prime}(c)+g^{\prime}(c)
$$

2. Similarly, for the function $f(x)-g(x)$, we have

$$
\left.\frac{d(f(x)-g(x))}{d x}\right|_{x=c}=f^{\prime}(c)-g^{\prime}(c)
$$

3. (Product Rule) For product of these two functions, the formula is slightly different, i.e.

$$
\left.\frac{d(f(x) g(x))}{d x}\right|_{x=c}=g(c) f^{\prime}(c)+g^{\prime}(c) f(c)
$$

Remark: In the case when $g(x) \equiv k$ (i.e. it is constantly equal to $k$ ), the above formula has the simpler form

$$
\left.\frac{d(k f(x))}{d x}\right|_{x=c}=k f^{\prime}(c)
$$

4. (Quotient Rule) For quotient, it is

$$
\left.\frac{d(f(x) g(x))}{d x}\right|_{x=c}=\frac{f^{\prime}(c) g(c)-g^{\prime}(c) f(c)}{(g(c))^{2}}
$$

## Idea of Proof of the Product Rule

We just outline one or two of the ideas. If you are interested in more detail, just send me an e-mail. I will explain more to you.

## A Preparatory Theorem

To show the product rule, we need the following "little" result:

Theorem (Differentiable at $x=c \Rightarrow$ continuous at $x=c$.)
Assume $f(x)$ is differentiable at $x=c$, then $f(x)$ is continuous at $x=c$.

## Proof:

Main idea is to start from the statement $\lim _{h \rightarrow 0} f(c+h)=f(c)$ (definition of "continuous at $x=c . "$ ) and try to connect it to i.e. $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)$ (definition of "differentiable at $x=c$. .).

The connection can be established if one looks at the expressions:
(i) $\quad f(c+h)-f(c)$ and
(ii) $\frac{f(c+h)-f(c)}{h}$

This is because $f(c+h)-f(c)=\frac{(f(c+h)-f(c))}{h} \cdot h$

Now we know that in the above equation, both of the limits $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ and the limit $\lim _{h \rightarrow 0} h$ exist.

Furthermore, the first of them is equal to $f^{\prime}(c)$, which is a finite number. The second one is equal to zero.
Combining all these, we get for the right-hand side:

$$
\lim _{h \rightarrow 0} \frac{(f(c+h)-f(c))}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(c) \cdot 0=0
$$

It follows that the limit of the left-hand side also exists and is given by

$$
\begin{aligned}
\lim _{h \rightarrow 0}(f(c+h)- & f(c))=\lim _{h \rightarrow 0}\left(\frac{(f(c+h)-f(c))}{h} h\right)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \cdot \lim _{h \rightarrow 0} h \\
& =0
\end{aligned}
$$

## Steps of the Proof of Product Rule

1. Consider the "Difference Quotient" i.e.

$$
\frac{f(c+h) g(c+h)-f(c) g(c)}{h}
$$

2. Rewrite it in the form (because we only know the following limits to exist: (i)

$$
\begin{aligned}
& \left.\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \text {, (ii) } \lim _{h \rightarrow 0} \frac{g(c+h)-g(c)}{h}\right): \\
& \frac{f(c+h) g(c+h)-f(c+h) g(c)+f(c+h) g(c)-f(c) g(c)}{h}
\end{aligned}
$$

Grouping terms we get from the above:

$$
\frac{f(c+h)[g(c+h)-g(c)]}{h}+g(c) \frac{f(c+h)-f(c)}{h}
$$

3. Take limit $h \rightarrow 0$. The term $\frac{g(c+h)-g(c)}{h}$ goes to the limit $g^{\prime}(c)$. On the other hand, the term $\frac{f(c+h)-f(c)}{h}$ goes to the limit $f^{\prime}(c)$. (You can write these two facts in the form: $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)$ and $\lim _{h \rightarrow 0} \frac{g(c+h)-g(c)}{h}=g^{\prime}(c)$ ).
4. We still have two more limits to consider. They are:
(i) $\lim _{h \rightarrow 0} f(c+h)$ and
(ii) (ii) $\lim _{h \rightarrow 0} g(c)$.

Since $f(x)$ is differentiable at $x=c$, it is continuous at $x=c$. So the first one is just $\lim _{h \rightarrow 0} f(c+h)=f(c)$. As for the second one, $g(c)$ is a constant function, so its limit is given by $\lim _{h \rightarrow 0} g(c)=g(c)$.
5. Combining all the above, we get

$$
\begin{gathered}
\lim _{h \rightarrow 0} f(c+h) \lim _{h \rightarrow 0} \frac{[g(c+h)-g(c)]}{h}+g(c) \lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \\
=f(c) g^{\prime}(c)+g(c) f^{\prime}(c) .
\end{gathered}
$$

Done:

- Chain Rule, application, proof strategy
- Implicit differentiation
- Intermediate Value Theorem


## An Application of the Chain Rule

Show that $\frac{d x^{\alpha}}{d x}=\alpha x^{\alpha-1}$, for any $\alpha \in R$ and any $x>0$.
(Solution)
Interpret $x^{\alpha}$ as $e^{\alpha \ln x}$ (where $x>0$ ).
Then using Chain Rule, we obtain (by letting $y=\alpha \ln x$ ) [ For simplicity, we don't write $\left.\quad\right|_{x=c}$ here.]

$$
\begin{gathered}
\frac{d x^{\alpha}}{d x}=\frac{d\left(e^{\alpha \ln x}\right)}{d x}=\frac{d\left(e^{\alpha \ln x}\right)}{d y} \frac{d(\alpha \ln x)}{d x} \\
=\frac{d\left(e^{y}\right)}{d y} \frac{d(\alpha \ln x)}{d x}=e^{y} \cdot \alpha\left(\frac{1}{x}\right)=e^{\alpha \ln x} \cdot \alpha \cdot x^{-1} \\
=e^{\ln x^{\alpha}} \cdot \alpha \cdot x^{-1}=x^{\alpha} \alpha x^{-1}=\alpha x^{\alpha-1} .
\end{gathered}
$$

## Mathematical Formulation of Chain Rule

The chain rule say:
Theorem. If $f(y)$ and $g(x)$ are two functions. Assume
(i) $\quad f(y)$ is differentiable at $y=g(c)$;
(ii) $\quad g(x)$ is differentiable at $x=c$.

Then
(i) $\quad f(g(x))$ is differentiable at $x=c$ and
(ii) $\left.\frac{d f(g(x))}{d x}\right|_{x=c}=f^{\prime}(g(c)) \cdot g^{\prime}(c)$.

## Proof Strategy

Again 2 steps.
(Step 1) Consider the Difference Quotient, i.e.

$$
\frac{f(g(c+h))-f(g(c))}{h}
$$

Rewrite it as

$$
\frac{f(g(c+h))-f(g(c))}{g(c+h)-g(c)} \cdot \frac{g(c+h)-g(c)}{h}
$$

Having done this, take limit and let $h \rightarrow 0$ in the above expression. This will lead to $f^{\prime}(g(c)) g^{\prime}(c)$

Remark: Two things to note.

1. The prime (i.e. ' ) in $f^{\prime}(g(c))$ means "differentiation with respect to $y$ ", while the prime (i.e ') in $g^{\prime}(x)$ means "differentiation with respect to $x$ ".
2. The above "proof strategy" has a lot of things which one has to fix. For example, one has to consider what happens if $g(c+h)-g(c)=0$ for numbers $c+h$ near to $c$.

## Implicit Differentiation

In high schools, you may have learned this way of computing derivative of a function:

$$
x^{2}+y^{2}=a^{2}
$$

Then compute the derivative of $x$, then of $y$, then of $a$ (which is on the right-hand side of the equation) all with respect to the independent variable $x$. Having done this, we obtain

$$
\frac{d x^{2}}{d x}+\frac{d y^{2}}{d x}=\frac{d a^{2}}{d x}
$$

$$
\text { Now } \frac{d x^{2}}{d x}=2 x, \frac{d y^{2}}{d x}=\frac{d y^{2}}{d y} \frac{d y}{d x}=2 y \cdot y^{\prime} \text { and } \frac{d a^{2}}{d x}=0
$$

Result: We get now $2 x+2 y y^{\prime}=0$ implying $y^{\prime}=\frac{-x}{y}$.

Remark: To compute the value of this derivative, we need two numbers, i.e. both $x$ and $y$. Or we can express $y$ in terms of $x$ using the equation

$$
x^{2}+y^{2}=a^{2}
$$

to get $y^{\prime}=-\frac{x}{ \pm \sqrt{a^{2}-x^{2}}}=\mp\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)$.

Question: Why can we do this?

Answer: This is due to the

Implicit Function Theorem, which roughly says:
Given any function of two variables $x$ and $y$, i.e. $f(x, y)$ and an equation $f(x, y)=c$ (the right-hand side is a constant), then we have

1. $y$ is a function of $x$ or
2. $x$ is a function of $y$.

In symbols, we write the sentence " $y$ is a function of $x$ " as " $y=y(x)$ ". (We don't write things like " $y=f(x)$ " because that would need an extra letter $f$.)

Similarly, the second sentence becomes $x=x(y)$.

## Example:

Suppose $f(x, y)=\cos (x y) e^{x y}$.
Now the above theorem says $f(x, y)=c$ implies $y=y(x)$ or $x=x(y)$. Let's suppose the first case is true, then we can find $\frac{d y}{d x}$.

Doing this, we obtain

$$
\frac{d \cos (x y) e^{x y}}{d x}=\frac{d c}{d x}=0
$$

The left-hand side is: $\frac{d \cos (x y)}{d x} e^{x y}+\cos (x y) \frac{d e^{x y}}{d x}=0$

$$
\begin{gathered}
-\sin (x y) \frac{d(x y)}{d x} e^{x y}+\cos (x y)\left[e^{x y}\left(\frac{d(x y)}{d x}\right)\right]=0 \\
-\sin (x y)\left\{x \frac{d y}{d x}+\frac{d x}{d x} y\right\} e^{x y}+\cos (x y)\left[e^{x y}\left\{x \frac{d y}{d x}+\frac{d x}{d x} y\right\}\right]=0 \\
-\sin (x y)\left\{x y^{\prime}+y\right\} e^{x y}+\cos (x y)\left[e^{x y}\left\{x y^{\prime}+y\right\}\right]=0 \\
y^{\prime} x e^{x y}[-\sin (x y)+\cos (x y)]=y e^{x y}[\sin (x y)-\cos (x y)]
\end{gathered}
$$

Hence $y^{\prime}=-\frac{y}{x}$ after writing $y^{\prime}$ on the left-hand side and the rest on the righthand side.

Remark: We said "roughly" because the theorem requires some "differentiability"
conditions on the function $f(x, y)$ which is usually satisfied. Also, the "or" can mean "either/or" or "both".

## (Optional)

In more advanced books, you can find the following statement:

$$
\begin{aligned}
& f(x, y)=c \text { gives after differentiating with respect to } x, \\
& \frac{d f(x, y)}{d x}=\frac{d f(x, y(x))}{d x}=\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial x} \frac{d y(x)}{d x}
\end{aligned}
$$

Similarly, when differentiated with respect to $y$, it gives

$$
\frac{d f(x, y)}{d y}=\frac{d f(x(y), y)}{d y}=\frac{\partial f}{\partial x} \frac{d x(y)}{d y}+\frac{\partial f}{\partial y} \frac{d y}{d y}
$$

The expressions $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are called "partial derivatives". We will talk about them later in the lectures.

## Intermediate Value Theorem

This is a useful consequence of the continuity of a function in an interval. More precisely, we have

## Theorem.

Suppose $f:[a, b] \rightarrow R$ is a function whose domain is the closed interval (i.e. the end-points $a$ and $b$ are included).

Suppose also that $f(x)$ is continuous at each point in $[a, b]$, and that $f(a)$. $f(b)<0$. (in other words, $f(a)$ and $f(b)$ are of "different" signs!) Then the curve $y=f(x)$ must intersect the $x$-axis somewhere between $a$ and $b$.
(In other words, the equation $f(x)=0$ has a solution (maybe more than 1 !) in the interval ( $a, b$ ).)

Remark: The end-points cannot be solution of this equation, because we are assuming that $f(a)<0$ or $>0$ (and correspondingly $f(b)>0$ or $<0$ ).

## Application:

The polynomial equation: $x^{7}+100 x^{4}+13 x+17=0$ has a solution.

Idea of solution: Let $f(x)=x^{7}+100 x^{4}+13 x+17$
Find $a$ and $b$ so that the $f(a)<0$ and $f(b)>0$. Then by the above theorem, the equation $f(x)=0$ has a solution in $[a, b]$.

